Pages

Tampilkan postingan dengan label mutli. Tampilkan semua postingan
Tampilkan postingan dengan label mutli. Tampilkan semua postingan

Minggu, 22 Mei 2016

9 Jeremy Blum Arduino Wireless Tutorial MCU Group Mtg August 7

Tonights post is a bit of a preview of Jeremys #9 Arduino video tutorial about wireless, along with a couple related comments and alternatives regarding microcontroller (MCU) wireless tutorials for future use by the Humboldt Microcontrollers Group.

But before I get into the Arduino wireless tutorial, there are two special deal items for people who buy MCU-related electronic components. I found out about these from SparkFun and Jameco emails.
  1. SparkFun Retrosparktive:  "SparkFun will be vacating its offices at 6175 Longbow and moving on up to Dry Creek Parkway...As part of the Retrosparktive, each week we are offering up a selection of classic products at “historically low prices” (sorry, couldn’t help myself). We’re calling this first selection the “Bare Necessities” - great things to have around your workspace or office. This selection of items is only on sale from 8/4/2014 at 12:01 a.m. MT until 8/10/14 at 11:59 p.m. MT - so get ‘em while you can! BUT WAIT, THERE’S MORE! We’re also offering a promo code good for $10 off any orders over $40. Just put the code “RETROSPARK” into the box at checkout to get your discount. This code is good until August 31, 2014."
  2. Jameco Free Friday Electronic Components Giveaway:  "Jamecos team of component buyers hunts for special buys and every Friday we will highlight one of these great buys by making a limited supply of one product available for free at www.Jameco.com/Free. Well
    post new inventory every Friday at 10 a.m. Pacific Time and it will be available on a first come, first serve basis
    ."
The next Humboldt Microcontrollers Group meeting is this Thursday, August 7. The main topic of the meeting will be to discuss Jeremy Blums #9 video tutorial, so tonights post takes a look at that tutorial. The topic is wireless communications with Arduino, and the #9 video exercise uses XBee radios. Wikipedias entry on this type of wireless communication equipment says:
"XBee is the brand name from Digi International for a family of form factor compatible radio modules. The first XBee radios were introduced under the MaxStream brand in 2005 and were based on the 802.15.4-2003 standard..."
The XBee brand has a wide range of models, with 2.4 GHz and 900Hz options, and the XBee-PRO 900HP is listed as having a 28 mile range. Having an Arduino communicate wirelessly 20+ miles away without cellular or Internet service seems like it could be handy for some things.

XBee is a brand name, and generally speaking, follows the ZigBee protocol for wireless personal area networks (WPAN). However, not all XBee technology is compatible with everything in the Zigbee world. For different views of what XBee is and how compatible it is, see the Digi International page about this, the SparkFun XBee Buying Guide or the StackExchange thread on the topic, which says:
"ZigBee / ZigBee Pro are mesh communication protocols that sits on top of IEEE 802.15.4 PHY. XBee / XBee Pro are product names for radio communications modules made by Digi. The modules can be loaded with various firmwares to support ZigBee / ZigBee Pro / DigiMesh and come in several frequency bands. DigiMesh is an alternative to ZigBee that changes a few things, and adds some features to make it generally better to work with. But, you sacrifice compatibility with ZigBee devices. For example DigiMesh allows routers to sleep, has lower overhead, has 1 node type vs zigbees 3 leading to a more robust mesh, can run at higher data rates, etc."
Boards for the #9 video tutorial
The moral of the story for MCU beginners like me is, if you want to do wireless communications with MCUs, use all the same brand and model of wireless radios. No need to try and figure out if your circuit doesnt work because the two or more radios arent compatible -- youll have enough fun just figuring out if the circuit is hooked up incorrectly or if your code has errors or poor design.

The exercise in Jeremys #9 video uses these boards -- two Arduino Unos, two XBee transceiver modules, two XBee shields, and a SparkFun USB to XBee adapter. In addition, youll need a stepper motor, a mini-B USB cable and a few other parts you probably have from other Arduino projects or tutorial exercises. Jeremy shows how to program the Xbee units ID numbers and how to hook up the Arduinos and other components. Then he walks the video viewer through the steps to write the program which allow the potentiometer connected to one Arduino to wirelessly control the position of the stepper motor which is connected to the other Arduino.
#9 exercise wired to breadboard

Excluding the two Arduinos and the miscellaneous parts you probably have, you can spend over $100 just on parts for the exercise in the #9 video. Ed Smith didnt have all the parts lying around to do this exercise and figured out an alternative exercise with a couple radios and other parts he did have around. He said hell explain on August 7th what he put together for an MCU wireless exercise.

The Humboldt Microcontrollers Group should consider discussing cost-effective options for a useful training session on MCU wireless technology.There are lots of options, but a couple starter ideas are:
  1. Have people work in groups of two or three to do essentially the same exercise Jeremy demonstrates. The people can buy different parts that they want to keep after the exercise, or one person can buy all the parts and keep them when the training is finished.
  2. Do essentially the same exercise as the #9 video, but identify less expensive components than the Arduino and XBee parts specd by Jeremy.
  3. Use one wireless radio instead of two and find or write a tutorial involving one radio.
Others in the MCU group will know or think of additional options for MCU wireless training sessions. A couple specific training sessions I found in a quick search were:
CC3000
  1. Wireless Gardening with Arduino + CC3000 WiFi Modules by Adafruit. I like this one because of the Humboldt MCU Garden project. The garden project would make the investment seem more useful than it would for a generic training exercise. Heres the CC3000 module from Adafruit, and heres a post about the CC3000 by ladyada.
  2. SparkFun has two MCU wireless tutorials; Arduino Wireless Communication via the Electric Imp and Wireless Arduino Programming with Electric Imp.
  3. Arduino Wireless SD Shield Tutorial from Instructables is one of the many Arduino Wi-Fi tutorials.
CC3200 LaunchPad
We could also find or develop a training session around one of the newer MCUs with built-in WiFi, such as the SimpleLink products from Texas Instruments (e.g. the CC3200 LaunchPad) or one of the other MCU manufacturers MCU with integrated Wi-Fi. Identifying some of those other integrated wireless / Wi-Fi components will likely be the subject of future research and blog posts.

In addition to discussing MCU wireless on Thursday, the MCU group will likely talk about upgrades to the Humboldt Laser Harp (HLH). After its debut performance in Eureka on August 2, weve got several improvements in mind. Im hopeful the HLH will make an appearance at the MCU group meeting on Thursday so everyone at the meeting can play with it and get excited about improving it, about making additional laser harps, and about designing and building other electronic music-light instruments which will help create the Humboldt Electronic Light Orchestra.

If you havent watched the #9 video, check it out. If you dont have time to watch it between now and Thursday but are interested in MCU wireless, come to the MCU group meeting anyway. Were looking forward to seeing you from 6 to 8 PM on Thursday, August 7, at 1385 8th Street, Arcata, CA.

**********
Read More..

Jumat, 29 April 2016

Mutli Phase Humboldt MCU Garden Project

As yesterdays Humboldt Laser Harp post indicated, the microcontroller (MCU) music group project is well under way. So now Im thinking about how to get the second group project started in the Humboldt Microcontrollers Group, one involving gardening.
MCU and sensors for potted plant

Several people whove been at Humboldt Makers Group meetings or the MCU group meetings have said theyre interested in MCUs and gardening. And it seems like lots of other people in Humboldt County might have an interest in ways to improve gardening. There are lots of organic gardeners in the area, and agriculture has been part of the Humboldt economy for much of the areas history. So Ive decided to outline a multi-phase approach to a collaborative project focused on MCU gardening. And a significant part of this collaborative project will be identifying and reaching out to Humboldt people who are involved in gardening or agriculture and might be interested in sharing their knowledge and / or participating in this project.
MCU and hydroponics

Two long term goals I have for the MCU gardening is to be involved with a successful hydroponics system and a successful aquaponics system. There are lots of websites and projects on the Internet that tell a person how to do hydroponics or aquaponics, but Im an engineer, and I like to understand what Im doing. Plus I dont have a lot of money to spend on these projects. So my preferred approach to MCU gardening is to start out small, and get more complex after I understand the technology and green thumb art involved with each part of the MCU garden project.

Below are proposed MCU garden project phases. If we get the right people involved with the project and if we can secure funding of some type for the project, we can move very quickly through the phases or work on more than one phase at a time. So if you know people whod like to participate in this project or know of money that can be used for purchasing electronic components and supplies for this, please contact me at arcatabob (at) gmail {dott} com. These are the proposed phases for the Humboldt MCU Garden group project:
MCU and aquaponics (from dzbc.org.cn)
  1. Grow one plant indoor in soil.
  2. Grow four to eight plants indoor in soil.
  3. Grow four types of plants outdoor in soil.
  4. Grow one tray of plants indoors in hydroponic system.
  5. Grow three types of plants indoors in hydroponic system.
  6. Grow one type of plant in aquaponics system.
  7. Grow three types of plants in aquaponics system.
Phase 1 of the Humboldt MCU Garden project is simple and low cost and will help us learn the basic principles of MCU gardening. Phases 2 through 7 can easily be redefined as we get more people involved in the project and we learn more about what we dont know about MCU gardening.

The first draft design of the Humboldt MCU Garden project includes:
  1. One type of plant.
    LEDs and lettuce
    1. Lettuce is my first choice, partly because of whats being done with optimized lettuce mcu gardening in Japan and other places (see my blog post "LED Lettuce, The HydroTower And LED Humboldt Hydroponics.") We might be able to find useful data about optimum growing conditions for lettuce (light wavelengths, relative humidity, nutrients, temperature, etc.).
    2. If other people who want to participate in the Humboldt MCU Garden project prefer to grow something other than lettuce and have information about good growing conditions for that plant, Im willing to switch from lettuce.
  2. Growing container.
    1. The type of growing container probably wont be too critical for Phase 1. Mainly something large enough to hold the soil and drainage system that will provide good growing conditions for the plant.
    2. A five gallon plastic bucket is one option, especially if we can find a free one.
    3. We need to figure out where the container with the plant and MCU Garden system will be kept. It seems like Phase 1 should mostly be indoors because that means we dont need to have a rain-proof system. But having a Phase 1 container thats easily movable would be nice so we can roll or carry the container outside on nice days.
  3. Growing condition sensors
    1. Light sensor -- very important so we get good photosynthesis (and good respiration?).
      One type of light sensor (from Adafruit)
    2. Soil moisture sensor -- very important because too dry means dead plant and too wet means dead plant.
    3. Temperature sensor -- important for growth, especially during Humboldt winters. Temperature will be less critical for plants like lettuce, but very critical for plants like tomatoes.
    4. Relative humidity sensor (RH) -- RH wont be critical for lettuce growth in Phase 1, but it will be critical as the projects future phases try to minimize water usage and as we try to grow RH-sensitive plants like redwood trees.
  4. LEDs for indoor gardening
    1. RGB LEDs will let us adjust the light if we want
    2. Red and Blue LEDs appear to be used for optimum lettuce growth.
    3. Research and / or people who know plant growth lighting and LEDs are required.
  5. MCU to gather and record sensor data
    1. Which MCU we use for the Humboldt MCU Garden project depends partly on who wants to be involved with the project.
      1. If we can get a sponsor for the Humboldt MCU Garden project, such as an MCU manufacturer or distributor, Ill use whichever MCU they manufacture or distribute!
      2. If no MCU manufacturer or distributor sponsor can be recruited, the MCU will be determined by whoever takes the lead on programming for the project.
        1. If Ed takes the lead, well probably use a Texas Instruments MCU.
        2. If Josiah takes the lead, or if Im filling that role, it will likely be an Arduino or Arduino-compatible.
        3. If someone other than Josiah, Ed or me volunteers to lead the garden-variety programming for this project, that person can choose the MCU type.
  6. Type of soil
    1. Determining what type of soil to use will require research or a project member who has good experience with growing plants indoors in containers.
    2. The type of soil will likely affect other gardening aspects such as what nutrients we need to add and the soil moisture measurement.
  7. Fertilizer and trace nutrients to add
    1. Fertilizer and trace nutrients is another topic that will require research or a project member experienced in the art.
    2. Might want to evaluate whether pH or some other batch or continuous sensor (pH? nutrient analysis?) should be used to track nutrient levels.
  8. Data gathering and analysis
    1. There are no specific requirements for data gathering and analysis for Phase 1 since its such a simple system. However, part of the purpose of Phase 1 is to learn how to effectively monitor growing conditions, so it makes sense to establish good gardening data practices (GGDP) for those growing conditions and different types of sensors.
    2. As part of my goal to get Humboldt people more involved in the Internet of Things (IoT), it would be good to use services like open data bases and IFTTT (If This Then That).
    3. One gardening data goal is to use that data to automatically track, alarm and interpret the data generated by the sensors. It would be nice to generate online graphs and have alarms sent out by IFTTT when growing conditions reach or approach setpoints where action needs to be taken.
The above outline give you an idea of what I think Phase 1 of the Humboldt MCU Garden group project should look like. Next steps for me to get this project rolling are (1) talk to and try to recruit a couple people whove expressed an interest in MCU gardening, (2) promote the project to other people in the Humboldt Makers and MCU group and try to recruit some of them, (3) develop a one-page MCU project proposal that I can use to pitch to potential sponsors, and (4) continue to do research for Phase 1 topics like sensors, nutrients and soil types.

If you are interested in this project or know someone who might be, please email me at arcatabob (at) gmail {dott} com or come to an MCU group meeting or Humboldt Makers meeting in the near future.

**********
Read More..